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Introduction

Rationales for this synthesis proposal:
Keep the non-EQ-adapting case as the default for the current status as that is the 
case for 99% (if not 100%) of existing re-drivers; thus preserve simplicity of 
implementation

Naturally extend the standard with a “symmetric” mindset; allow re-driver TX and 
RX that can EQ adapt to do so with different or extra input as in the earlier proposals

Preserve the need to invoke AMI_Init only once avoiding multiple AMI_Close, 
AMI_Init sequences

Let the multi-re-driver case get implemented readily with a loop enumerating re-
drivers from initial TX to final RX
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Synthesis Proposal

Symbol or Function Definition

IRpostch,k Post-channel IR of k
th

re-driver

IRprech,k Pre-channel IR of k
th

re-driver

AMIredRX,k(arg) Analytical/AMI_Init modification of argument IR by k
th

re-driver RX, identity operator if either re-
driver RX AMI or its returned IR does not exist

AMIredTX,k(arg) Analytical/AMI_Init modification of argument IR by k
th

re-driver TX, identity operator if either re-
driver TX AMI or its returned IR does not exist

AMIredTXRX,k(arg) Analytical/AMI_Init modification of argument IR by combined k
th

re-driver TX-RX, identity 
operator if either re-driver TX-RX AMI or its returned IR does not exist

AMITX(arg) Analytical/AMI_Init modification of argument IR by TX, identity operator if either TX AMI or its 
return IR does not exist

IRredRXin,k

The upstream response that the k
th

re-driver RX would “see”: IRprech or AMITX(IRprech) or 
AMIredTX,1(IRprech) for re-driver #1 or cascaded cross-convolved forms of these like 
AMIredRX,1(AMITX(IRprech,1)) ⨂AMIredTX,1(IRpostch,1) … ⨂AMIredRX,k(IRredRXin,k) ⨂
AMIredTX,k (IRpostch,k)) . The individual terms will change with certain switches discussed next.

• The notions of pre- and post- can refer to any individual re-driver in a re-driver chain.
• IRpostch,k = IRprech,k+1 for the kth and k+1th re-drivers, if applicable.
• Positive index k of the re-driver refers to the AMI component from TX to RX, excluding TX and RX.
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Solution Proposal – Two Optional Reserved Keywords
1. Optional AMI_RED_TX_EQ_MODE => { POST (default), PRE, BOTH }
2. Optional AMI_RED_RX_EQ_MODE => { PRE (default), POST, BOTH }

• Default: Much like an AMI_TX and AMI_RX take their post and pre-channel, the latter possibly equalized by 
earlier TX, in a symmetric fashion that would be the default AMI behavior.

• Setting AMI_RE_TX_EQ_MODE to PRE would pass it pre-channel, possibly equalized by earlier TX and re-
driver RX, instead of post-channel:
• Instead of AMIredTx,k(IRpostch,k), we’d have AMIredTx,k(IRredRxin,k).

• Setting AMI_RE_RX_EQ_MODE to POST would pass it unequalized post-channel instead of pre-channel, 
possibly equalized by earlier TX:
• Instead of AMIredRx,k(IRredRxin,k), we’d have AMIredRx,k(IRpostch,k).

• Setting either to both would require an additional column in the input IR matrix. (We should pass even the 
additional cross-talks for completeness.) Associated single-argument functions now become double-
argument. Note that each IR argument is actually a bundle consisting of its data and cross-talking lanes:
• Instead of AMIredTx,k(IRpostch,k), we’d have AMIredTx,k(IRpostch,k, IRredRxin,k).
• Instead of AMIredRx,k(IRredRxin), we’d have AMIredRx,k(IRredRxin,k, IRpostch,k).
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Solution Proposal – Tabular Form
AMI_RED_TX_EQ_
MODE

AMI_RED_RX_EQ_
MODE

Input IR to kth re-driver 
TX, i.e., arg(s) of  
AMIredTX,k()

Input IR to kth re-driver 
RX, i.e., arg(s) of 
AMIredRX,k()

Upstream IR to 
final RX 
assuming k is 
last re-driver

POST (default) PRE(default) IRpostch,k IRredRXin,k AMIredRX,k(IRr
edRXin,k) ⨂
AMIredTX,k(Irp
ostch,k)

PRE PRE(default) IRredRXin,k IRredRXin,k

BOTH PRE(default) IRpostch,k,IRredRxin,k IRredRXin,k

POST (default) POST IRpostch,k IRpostch,k

PRE POST IRredRXin,k IRpostch,k

BOTH POST IRpostch,k,IRredRxin,k IRpostch,k

POST(default) BOTH IRpostch,k IRredRxin,k,Irpostch,k

PRE BOTH IRredRXin,k IRredRxin,k,Irpostch,k

BOTH BOTH IRpostch,k,IRredRxin,k IRredRxin,k,Irpostch,k

One can
complete
with explicit
final channel
convolution
as needed …
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Discussion

• To check:
• Complete and check final upstream IR in the table…
• AMI_Init is indeed called once, right?
• Make sure indeed simple evaluation with a loop enumerating over re-drivers from left to 

right work through “propagating” IRredRXin,k.
• Fix fallacies if any, write down a few explicit expressions for IRredRXin,k, which is a 

function of each re-driver AMI’s TX and RX AMI EQ modes…
• Assuming no major fallacies:

• Are your most desired EQ adaptation features in this proposal?
• Also needed are the changes to handle of AMI_Init only re-driver/non-re-

driver AMIs in empirical signaling by updating the linked channel 
accordingly (Unless it is a combined TX-RX re-driver, linked channel is well 
defined. We can keep that unspecified. IMO, combined one is conceptually 
broken.)




